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Figure. 1 The cross correlations between the 

latitude of fall GS and the COB of spring SH. The 

solid (dotted) lines with plus signs are cross 

correlations between the observed data with 

(without) their trends. The solid (dotted) lines 

without plus signs mark the significance at 95% 

level for the correlations with (without) trends 

respectively. 
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Summary 
Over the past ~40 years, the distribution of silver hake (SH) on the Northeast U.S. shelf is found to be 

closely related to changes in the latitude of the Gulf Stream (GS) path. The correlation coefficient 

between the fall GS position (GS hereafter) and the center of biomass (COB) of spring SH (SH 

hereafter) reaches 0.75 when the GS leads the SH for 0.5 year. Based on this lead-lag relationship and 

the low-frequency variability of GS position with a dominant period of ~9-10 years, the GS path index 

is used as a predictor for the COB of SH in linear autoregressive (AR) models. The goal of this study is 

then to optimize the AR models for the prediction of SH based on the observed changes in GS 

position. Fall GS position is first predicted out to 5 years using a 5th order AR model and the 

observed GS position in preceding years. We then use this predicted GS position to predict the COB 

of SH in subsequent spring. The predicted SH time series can explain as much as 69% of the variance 

of the observation for the 1st year prediction and 41 % for the 5th year prediction.  

 

Introduction 
Silver hake (SH) is a semi-pelagic fish prolific in 

Northeast U.S. shelf. Nye et al. (2011) reported that 

changes in spatial distribution of SH over the past forty 

years demonstrate a high correlation with the latitude of 

the Gulf Stream (GS) path. These changes are in direct 

response to changes in the Atlantic Meridional 

Overturning Circulation (AMOC), which drive shifts in 

bottom temperature on the outer continental shelf. The 

correlation between GS position and SH spatial 

distribution is characterized by a phase lag with the GS 

leading the SH by 0.5 year (Figure 1). This lagged 

correlation offers some potential predictability of SH 

using GS data. Based on the GS path index as defined in 

Joyce et al. (2009) and the Silver hake data collected by 

the NOAA Northeast Fisheries Science Center (NEFSC) 

trawl survey on the Northeast U.S. shelf, we optimize 

autoregressive models for the prediction of the GS, 

which is then used to predict the SH spatial variability. 

 

Materials and Methods 
Silver hake data are collected by the NOAA Northeast Fisheries Science Center (NEFSC) trawl survey 

on the Northeast U.S. shelf. The data used are the COB of the southern SH as calculated in Nye et al. 

(2009) as an overall distance from the Cape Hatteras, North Carolina. There are two measurements in 

each year: one in spring, the other in fall. The spring SH data were collected from 1968 to 2008 and the 

fall SH data start 5 years earlier, i.e., from 1963 to 2008. GS path index data used representing 

coherent north-south shift of the current in 55°-75°W is based on the historical subsurface 

temperature data at 200 m depth (Joyce et al. 2009). The GS data are available from 1954 to 2008, 

which has four data points in each year, one in each season. Here we define the spring and fall GS 

path index by simply averaging the first two data points and last two data points of the GS path index 
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Figure. 2 The 1st year prediction of the spring SH 

based on the fall GS prediction and the ‘residual’. 

The magenta and blue bars are the observed 

spring SH and the black lines with dots are the 

predicted time series.     

in each year, respectively. The autocorrelation function shows the GS variability has a dominant 

frequency of ~ 9 years. Therefore, we optimize Autoregressive (AR) models for the prediction of GS 

path in future 5 years and then predict the SH based on their close relationship. An AR5 is 

determined for the fall GS prediction based on the Schwartz's Bayesian (SBC) Criterion (Schwartz 

1978). To optimize the AR parameters, we develop a combined prediction skill and test its use and 

robustness through AR models from order 2 to 5. 

 

Results and Discussion 
It is found that the correlation between the prediction of the GS and the observation using AR5 can be 

as high as 0.83 for the 1st year and ~ 0.6 for the 2nd to 5th year. We then made the prediction of the 

spring SH based on the fall GS prediction through the linear relationship between the fall GS and 

spring SH. Another method of the prediction of spring SH is also performed by adding the prediction 

of the ‘residual’ also using AR5 model to the predicted SH based on GS. The ‘residual’ here is the 

difference between observed and the predicted spring SH for the 1st year, which is based on the 

linear regression between the fall GS and spring 

SH. By comparison, the prediction of the spring SH 

with ‘residual’ demonstrates better prediction skill 

with the correlation coefficients as high as 0.83 

(Figure 2) for the 1st year prediction and all others 

above 0.6 for the future 5 years’ prediction. This 

‘residual’ may represent biological aspects of the 

SH and does not have a dominant frequency 

significantly based on its autocorrelation. Since the 

SH’s preferred bottom-water temperature range (7-

10˚ C, Nye et al. 2011) is mainly responsible for the 

close correlation between GS and SH, the ‘residual’ 

could also be due to temperature changes affecting 

SH that are unrelated to GS path variations.  

 

Based on our prediction, the GS path shifted toward its northerly position after 2010 and the COB of 

southern spring SH migrated northward (Figure 2). This prediction of the GS path is in agreement 

with the satellite observations (Pérez-Hernández and Joyce 2014). There are many biological and 

anthropogenic factors that can contribute to the variability of SH which are not the subject of interest 

in this study. By considering the impact of physical environment represented by GS alone and using a 

simple optimized AR model, the 1st year prediction of SH can explain as much as ~ 69% of the 

observed variance of SH. The result suggests the dominant role of the physical environment in the SH 

variability and the effectiveness of the AR model for this type of study. The successful prediction of 

biological production and distribution is critical for the fishery management and planning. Our 

results here offer a valuable basis for current efforts in the prediction of biological variability based on 

climate indices. 
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